easings.d 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. /*******************************************************************************************
  2. *
  3. * raylib easings (header only file)
  4. *
  5. * Useful easing functions for values animation
  6. *
  7. * This header uses:
  8. * #define EASINGS_STATIC_INLINE // Inlines all functions code, so it runs faster.
  9. * // This requires lots of memory on system.
  10. * How to use:
  11. * The four inputs t,b,c,d are defined as follows:
  12. * t = current time (in any unit measure, but same unit as duration)
  13. * b = starting value to interpolate
  14. * c = the total change in value of b that needs to occur
  15. * d = total time it should take to complete (duration)
  16. *
  17. * Example:
  18. *
  19. * int currentTime = 0;
  20. * int duration = 100;
  21. * float startPositionX = 0.0f;
  22. * float finalPositionX = 30.0f;
  23. * float currentPositionX = startPositionX;
  24. *
  25. * while (currentPositionX < finalPositionX)
  26. * {
  27. * currentPositionX = EaseSineIn(currentTime, startPositionX, finalPositionX - startPositionX, duration);
  28. * currentTime++;
  29. * }
  30. *
  31. * A port of Robert Penner's easing equations to C (http://robertpenner.com/easing/)
  32. *
  33. * Robert Penner License
  34. * ---------------------------------------------------------------------------------
  35. * Open source under the BSD License.
  36. *
  37. * Copyright (c) 2001 Robert Penner. All rights reserved.
  38. *
  39. * Redistribution and use in source and binary forms, with or without modification,
  40. * are permitted provided that the following conditions are met:
  41. *
  42. * - Redistributions of source code must retain the above copyright notice,
  43. * this list of conditions and the following disclaimer.
  44. * - Redistributions in binary form must reproduce the above copyright notice,
  45. * this list of conditions and the following disclaimer in the documentation
  46. * and/or other materials provided with the distribution.
  47. * - Neither the name of the author nor the names of contributors may be used
  48. * to endorse or promote products derived from this software without specific
  49. * prior written permission.
  50. *
  51. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  52. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  53. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  54. * IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
  55. * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  56. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  58. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
  59. * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  60. * OF THE POSSIBILITY OF SUCH DAMAGE.
  61. * ---------------------------------------------------------------------------------
  62. *
  63. * Copyright (c) 2015 Ramon Santamaria
  64. *
  65. * This software is provided "as-is", without any express or implied warranty. In no event
  66. * will the authors be held liable for any damages arising from the use of this software.
  67. *
  68. * Permission is granted to anyone to use this software for any purpose, including commercial
  69. * applications, and to alter it and redistribute it freely, subject to the following restrictions:
  70. *
  71. * 1. The origin of this software must not be misrepresented; you must not claim that you
  72. * wrote the original software. If you use this software in a product, an acknowledgment
  73. * in the product documentation would be appreciated but is not required.
  74. *
  75. * 2. Altered source versions must be plainly marked as such, and must not be misrepresented
  76. * as being the original software.
  77. *
  78. * 3. This notice may not be removed or altered from any source distribution.
  79. *
  80. **********************************************************************************************/
  81. extern (C):
  82. pragma(inline, true): // NOTE: By default, compile functions as static inline
  83. import core.stdc.math; // Required for: sinf(), cosf(), sqrt(), pow()
  84. enum PI = 3.14159265358979323846f; //Required as PI is not always defined in math.h
  85. // Linear Easing functions
  86. static float EaseLinearNone(float t, float b, float c, float d) { return (c*t/d + b); }
  87. static float EaseLinearIn(float t, float b, float c, float d) { return (c*t/d + b); }
  88. static float EaseLinearOut(float t, float b, float c, float d) { return (c*t/d + b); }
  89. static float EaseLinearInOut(float t,float b, float c, float d) { return (c*t/d + b); }
  90. // Sine Easing functions
  91. static float EaseSineIn(float t, float b, float c, float d) { return (-c*cosf(t/d*(PI/2.0f)) + c + b); }
  92. static float EaseSineOut(float t, float b, float c, float d) { return (c*sinf(t/d*(PI/2.0f)) + b); }
  93. static float EaseSineInOut(float t, float b, float c, float d) { return (-c/2.0f*(cosf(PI*t/d) - 1.0f) + b); }
  94. // Circular Easing functions
  95. static float EaseCircIn(float t, float b, float c, float d) { t /= d; return (-c*(sqrtf(1.0f - t*t) - 1.0f) + b); }
  96. static float EaseCircOut(float t, float b, float c, float d) { t = t/d - 1.0f; return (c*sqrtf(1.0f - t*t) + b); }
  97. static float EaseCircInOut(float t, float b, float c, float d)
  98. {
  99. if ((t/=d/2.0f) < 1.0f) return (-c/2.0f*(sqrtf(1.0f - t*t) - 1.0f) + b);
  100. t -= 2.0f; return (c/2.0f*(sqrtf(1.0f - t*t) + 1.0f) + b);
  101. }
  102. // Cubic Easing functions
  103. static float EaseCubicIn(float t, float b, float c, float d) { t /= d; return (c*t*t*t + b); }
  104. static float EaseCubicOut(float t, float b, float c, float d) { t = t/d - 1.0f; return (c*(t*t*t + 1.0f) + b); }
  105. static float EaseCubicInOut(float t, float b, float c, float d)
  106. {
  107. if ((t/=d/2.0f) < 1.0f) return (c/2.0f*t*t*t + b);
  108. t -= 2.0f; return (c/2.0f*(t*t*t + 2.0f) + b);
  109. }
  110. // Quadratic Easing functions
  111. static float EaseQuadIn(float t, float b, float c, float d) { t /= d; return (c*t*t + b); }
  112. static float EaseQuadOut(float t, float b, float c, float d) { t /= d; return (-c*t*(t - 2.0f) + b); }
  113. static float EaseQuadInOut(float t, float b, float c, float d)
  114. {
  115. if ((t/=d/2) < 1) return (((c/2)*(t*t)) + b);
  116. return (-c/2.0f*(((t - 1.0f)*(t - 3.0f)) - 1.0f) + b);
  117. }
  118. // Exponential Easing functions
  119. static float EaseExpoIn(float t, float b, float c, float d) { return (t == 0.0f) ? b : (c*powf(2.0f, 10.0f*(t/d - 1.0f)) + b); }
  120. static float EaseExpoOut(float t, float b, float c, float d) { return (t == d) ? (b + c) : (c*(-powf(2.0f, -10.0f*t/d) + 1.0f) + b); }
  121. static float EaseExpoInOut(float t, float b, float c, float d)
  122. {
  123. if (t == 0.0f) return b;
  124. if (t == d) return (b + c);
  125. if ((t/=d/2.0f) < 1.0f) return (c/2.0f*powf(2.0f, 10.0f*(t - 1.0f)) + b);
  126. return (c/2.0f*(-powf(2.0f, -10.0f*(t - 1.0f)) + 2.0f) + b);
  127. }
  128. // Back Easing functions
  129. static float EaseBackIn(float t, float b, float c, float d)
  130. {
  131. float s = 1.70158f;
  132. float postFix = t/=d;
  133. return (c*(postFix)*t*((s + 1.0f)*t - s) + b);
  134. }
  135. static float EaseBackOut(float t, float b, float c, float d)
  136. {
  137. float s = 1.70158f;
  138. t = t/d - 1.0f;
  139. return (c*(t*t*((s + 1.0f)*t + s) + 1.0f) + b);
  140. }
  141. static float EaseBackInOut(float t, float b, float c, float d)
  142. {
  143. float s = 1.70158f;
  144. if ((t/=d/2.0f) < 1.0f)
  145. {
  146. s *= 1.525f;
  147. return (c/2.0f*(t*t*((s + 1.0f)*t - s)) + b);
  148. }
  149. float postFix = t-=2.0f;
  150. s *= 1.525f;
  151. return (c/2.0f*((postFix)*t*((s + 1.0f)*t + s) + 2.0f) + b);
  152. }
  153. // Bounce Easing functions
  154. static float EaseBounceOut(float t, float b, float c, float d)
  155. {
  156. if ((t/=d) < (1.0f/2.75f))
  157. {
  158. return (c*(7.5625f*t*t) + b);
  159. }
  160. else if (t < (2.0f/2.75f))
  161. {
  162. float postFix = t-=(1.5f/2.75f);
  163. return (c*(7.5625f*(postFix)*t + 0.75f) + b);
  164. }
  165. else if (t < (2.5/2.75))
  166. {
  167. float postFix = t-=(2.25f/2.75f);
  168. return (c*(7.5625f*(postFix)*t + 0.9375f) + b);
  169. }
  170. else
  171. {
  172. float postFix = t-=(2.625f/2.75f);
  173. return (c*(7.5625f*(postFix)*t + 0.984375f) + b);
  174. }
  175. }
  176. static float EaseBounceIn(float t, float b, float c, float d) { return (c - EaseBounceOut(d - t, 0.0f, c, d) + b); }
  177. static float EaseBounceInOut(float t, float b, float c, float d)
  178. {
  179. if (t < d/2.0f) return (EaseBounceIn(t*2.0f, 0.0f, c, d)*0.5f + b);
  180. else return (EaseBounceOut(t*2.0f - d, 0.0f, c, d)*0.5f + c*0.5f + b);
  181. }
  182. // Elastic Easing functions
  183. static float EaseElasticIn(float t, float b, float c, float d)
  184. {
  185. if (t == 0.0f) return b;
  186. if ((t/=d) == 1.0f) return (b + c);
  187. float p = d*0.3f;
  188. float a = c;
  189. float s = p/4.0f;
  190. float postFix = a*powf(2.0f, 10.0f*(t-=1.0f));
  191. return (-(postFix*sinf((t*d-s)*(2.0f*PI)/p )) + b);
  192. }
  193. static float EaseElasticOut(float t, float b, float c, float d)
  194. {
  195. if (t == 0.0f) return b;
  196. if ((t/=d) == 1.0f) return (b + c);
  197. float p = d*0.3f;
  198. float a = c;
  199. float s = p/4.0f;
  200. return (a*powf(2.0f,-10.0f*t)*sinf((t*d-s)*(2.0f*PI)/p) + c + b);
  201. }
  202. static float EaseElasticInOut(float t, float b, float c, float d)
  203. {
  204. if (t == 0.0f) return b;
  205. if ((t/=d/2.0f) == 2.0f) return (b + c);
  206. float p = d*(0.3f*1.5f);
  207. float a = c;
  208. float s = p/4.0f;
  209. if (t < 1.0f)
  210. {
  211. float postFix = a*powf(2.0f, 10.0f*(t-=1.0f));
  212. return -0.5f*(postFix*sinf((t*d-s)*(2.0f*PI)/p)) + b;
  213. }
  214. float postFix = a*powf(2.0f, -10.0f*(t-=1.0f));
  215. return (postFix*sinf((t*d-s)*(2.0f*PI)/p)*0.5f + c + b);
  216. }