raymathext.d 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305
  1. module raymathext;
  2. import raylib;
  3. import std.math;
  4. pragma(inline, true):
  5. // Bivector2 type
  6. struct Bivector2
  7. {
  8. float xy = 0.0f;
  9. alias xy this;
  10. mixin Linear;
  11. }
  12. // Bivector3 type
  13. /// Beware of the field order
  14. /// xy is the first field
  15. struct Bivector3
  16. {
  17. float xy = 0.0f;
  18. float yz = 0.0f;
  19. float zx = 0.0f;
  20. mixin Linear;
  21. }
  22. // Rotor type
  23. struct Rotor3
  24. {
  25. float a = 1.0f;
  26. float xy = 0.0f;
  27. float yz = 0.0f;
  28. float zx = 0.0f;
  29. mixin Linear;
  30. alias i = yz;
  31. alias j = zx;
  32. alias k = xy;
  33. @property Bivector3 b()
  34. {
  35. return Bivector3(xy, yz, zx);
  36. }
  37. @property Bivector3 b(Bivector3 _b)
  38. {
  39. xy = _b.xy;
  40. yz = _b.yz;
  41. zx = _b.zx;
  42. return _b;
  43. }
  44. this(float _a, Bivector3 _b)
  45. {
  46. a = _a;
  47. b = _b;
  48. }
  49. this(float _a, float _xy, float _yz, float _zx)
  50. {
  51. a = _a;
  52. xy = _xy;
  53. yz = _yz;
  54. zx = _zx;
  55. }
  56. }
  57. alias Matrix4 = Matrix;
  58. version (unittest)
  59. {
  60. import fluent.asserts;
  61. }
  62. mixin template Linear()
  63. {
  64. import std.algorithm : canFind, map;
  65. import std.range : join;
  66. import std.traits : FieldNameTuple;
  67. private static alias T = typeof(this);
  68. static T zero()
  69. {
  70. enum fragment = [FieldNameTuple!T].map!(field => "0.").join(",");
  71. return mixin("T(" ~ fragment ~ ")");
  72. }
  73. static T one()
  74. {
  75. enum fragment = [FieldNameTuple!T].map!(field => "1.").join(",");
  76. return mixin("T(" ~ fragment ~ ")");
  77. }
  78. inout T opUnary(string op)() if (["+", "-"].canFind(op))
  79. {
  80. enum fragment = [FieldNameTuple!T].map!(field => op ~ field).join(",");
  81. return mixin("T(" ~ fragment ~ ")");
  82. }
  83. static if (is(T == Rotor3))
  84. {
  85. /// Returns a rotor equivalent to first apply p, then apply q
  86. inout Rotor3 opBinary(string op)(inout Rotor3 q) if (op == "*")
  87. {
  88. alias p = this;
  89. Rotor3 r;
  90. r.a = p.a * q.a - p.i * q.i - p.j * q.j - p.k * q.k;
  91. r.i = p.i * q.a + p.a * q.i + p.j * q.k - p.k * q.j;
  92. r.j = p.j * q.a + p.a * q.j + p.k * q.i - p.i * q.k;
  93. r.k = p.k * q.a + p.a * q.k + p.i * q.j - p.j * q.i;
  94. return r;
  95. }
  96. inout Vector3 opBinary(string op)(inout Vector3 v) if (op == "*")
  97. {
  98. Vector3 rv;
  99. rv.x = a * v.x + xy * v.y - zx * v.z;
  100. rv.y = a * v.y + yz * v.z - xy * v.x;
  101. rv.z = a * v.z + zx * v.x - yz * v.y;
  102. return rv;
  103. }
  104. inout Vector3 opBinaryRight(string op)(inout Vector3 v) if (op == "*")
  105. {
  106. Vector3 vr;
  107. vr.x = v.x * a - v.y * xy + v.z * zx;
  108. vr.y = v.y * a - v.z * yz + v.x * xy;
  109. vr.z = v.z * a - v.x * zx + v.y * yz;
  110. return vr;
  111. }
  112. }
  113. else
  114. {
  115. inout T opBinary(string op)(inout T rhs) if (["+", "-"].canFind(op))
  116. {
  117. enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs." ~ field).join(",");
  118. return mixin("T(" ~ fragment ~ ")");
  119. }
  120. }
  121. inout T opBinary(string op)(inout float rhs) if (["+", "-", "*", "/"].canFind(op))
  122. {
  123. enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs").join(",");
  124. return mixin("T(" ~ fragment ~ ")");
  125. }
  126. inout T opBinaryRight(string op)(inout float lhs) if (["+", "-", "*", "/"].canFind(op))
  127. {
  128. enum fragment = [FieldNameTuple!T].map!(field => "lhs" ~ op ~ field).join(",");
  129. return mixin("T(" ~ fragment ~ ")");
  130. }
  131. }
  132. unittest
  133. {
  134. Assert.equal(Vector2.init, Vector2.zero);
  135. Assert.equal(Vector2(), Vector2.zero);
  136. Assert.equal(-Vector2(1, 2), Vector2(-1, -2));
  137. auto a = Vector3(1, 2, 9);
  138. immutable b = Vector3(3, 4, 9);
  139. Vector3 c = a + b;
  140. Assert.equal(c, Vector3(4, 6, 18));
  141. Assert.equal(4.0f - Vector2.zero, Vector2(4, 4));
  142. Assert.equal(Vector2.one - 3.0f, Vector2(-2, -2));
  143. }
  144. import std.traits : FieldNameTuple;
  145. import std.algorithm : map;
  146. import std.range : join;
  147. float length(T)(T v)
  148. {
  149. enum fragment = [FieldNameTuple!T].map!(field => "v." ~ field ~ "*" ~ "v." ~ field).join("+");
  150. return mixin("sqrt(" ~ fragment ~ ")");
  151. }
  152. T normal(T)(T v)
  153. {
  154. return v / v.length;
  155. }
  156. float distance(T)(T lhs, T rhs)
  157. {
  158. return (lhs - rhs).length;
  159. }
  160. float dot(T)(T lhs, T rhs)
  161. {
  162. enum fragment = [FieldNameTuple!T].map!(field => "lhs." ~ field ~ "*" ~ "rhs." ~ field).join(
  163. "+");
  164. return mixin(fragment);
  165. }
  166. unittest
  167. {
  168. Assert.equal(Vector2(3, 4).length, 5);
  169. const a = Vector2(-3, 4);
  170. Assert.equal(a.normal, Vector2(-3. / 5., 4. / 5.));
  171. immutable b = Vector2(9, 8);
  172. Assert.equal(b.distance(Vector2(-3, 3)), 13);
  173. Assert.equal(Vector3(2, 3, 4).dot(Vector3(4, 5, 6)), 47);
  174. Assert.equal(Vector2.one.length, sqrt(2.0f));
  175. }
  176. unittest
  177. {
  178. Assert.equal(Rotor3(1, 2, 3, 4), Rotor3(1, Bivector3(2, 3, 4)));
  179. }
  180. /// Mix `amount` of `lhs` with `1-amount` of `rhs`
  181. /// `amount` should be between 0 and 1, but can be anything
  182. /// lerp(lhs, rhs, 0) == lhs
  183. /// lerp(lhs, rhs, 1) == rhs
  184. T lerp(T)(T lhs, T rhs, float amount)
  185. {
  186. return lhs + amount * (rhs - lhs);
  187. }
  188. /// angle betwenn vector and x-axis (+y +x -> positive)
  189. float angle(Vector2 v)
  190. {
  191. return atan2(v.y, v.x);
  192. }
  193. Vector2 rotate(Vector2 v, float angle)
  194. {
  195. return Vector2(v.x * cos(angle) - v.y * sin(angle), v.x * sin(angle) + v.y * cos(angle));
  196. }
  197. Vector2 slide(Vector2 v, Vector2 along)
  198. {
  199. return along.normal * dot(v, along);
  200. }
  201. Bivector2 wedge(Vector2 lhs, Vector2 rhs)
  202. {
  203. Bivector2 result = {xy: lhs.x * rhs.y - lhs.y * rhs.x};
  204. return result;
  205. }
  206. // dfmt off
  207. Bivector3 wedge(Vector3 lhs, Vector3 rhs)
  208. {
  209. Bivector3 result = {
  210. xy: lhs.x * rhs.y - lhs.y * rhs.x,
  211. yz: lhs.y * rhs.z - lhs.z * rhs.y,
  212. zx: lhs.z * rhs.x - lhs.x * rhs.z,
  213. };
  214. return result;
  215. }
  216. Vector3 transform(Vector3 v, Matrix4 mat)
  217. {
  218. with (v) with (mat)
  219. return Vector3(
  220. m0 * x + m4 * y + m8 * z + m12,
  221. m1 * x + m5 * y + m9 * z + m13,
  222. m2 * x + m6 * y + m10 * z + m14
  223. );
  224. }
  225. // dfmt on
  226. Vector3 cross(Vector3 lhs, Vector3 rhs)
  227. {
  228. auto v = wedge(lhs, rhs);
  229. return Vector3(v.yz, v.zx, v.xy);
  230. }
  231. unittest {
  232. // TODO
  233. }
  234. /// Returns a unit rotor that rotates `from` to `to`
  235. Rotor3 rotation(Vector3 from, Vector3 to)
  236. {
  237. return Rotor3(1 + dot(to, from), wedge(to, from)).normal;
  238. }
  239. Rotor3 rotation(float angle, Bivector3 plane)
  240. {
  241. return Rotor3(cos(angle / 2.0f), -sin(angle / 2.0f) * plane);
  242. }
  243. /// Rotate q by p
  244. Rotor3 rotate(Rotor3 p, Rotor3 q)
  245. {
  246. return p * q * p.reverse;
  247. }
  248. /// Rotate v by r
  249. Vector3 rotate(Rotor3 r, Vector3 v)
  250. {
  251. return r * v * r.reverse;
  252. }
  253. Rotor3 reverse(Rotor3 r)
  254. {
  255. return Rotor3(r.a, -r.b);
  256. }
  257. unittest
  258. {
  259. // TODO
  260. }