123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559 |
- module raymath;
- import raylib;
- /**********************************************************************************************
- *
- * raymath v1.5 - Math functions to work with Vector2, Vector3, Matrix and Quaternions
- *
- * CONFIGURATION:
- *
- * #define RAYMATH_IMPLEMENTATION
- * Generates the implementation of the library into the included file.
- * If not defined, the library is in header only mode and can be included in other headers
- * or source files without problems. But only ONE file should hold the implementation.
- *
- * #define RAYMATH_STATIC_INLINE
- * Define static inline functions code, so #include header suffices for use.
- * This may use up lots of memory.
- *
- * CONVENTIONS:
- *
- * - Functions are always self-contained, no function use another raymath function inside,
- * required code is directly re-implemented inside
- * - Functions input parameters are always received by value (2 unavoidable exceptions)
- * - Functions use always a "result" anmed variable for return
- * - Functions are always defined inline
- * - Angles are always in radians (DEG2RAD/RAD2DEG macros provided for convenience)
- *
- *
- * LICENSE: zlib/libpng
- *
- * Copyright (c) 2015-2021 Ramon Santamaria (@raysan5)
- *
- * This software is provided "as-is", without any express or implied warranty. In no event
- * will the authors be held liable for any damages arising from the use of this software.
- *
- * Permission is granted to anyone to use this software for any purpose, including commercial
- * applications, and to alter it and redistribute it freely, subject to the following restrictions:
- *
- * 1. The origin of this software must not be misrepresented; you must not claim that you
- * wrote the original software. If you use this software in a product, an acknowledgment
- * in the product documentation would be appreciated but is not required.
- *
- * 2. Altered source versions must be plainly marked as such, and must not be misrepresented
- * as being the original software.
- *
- * 3. This notice may not be removed or altered from any source distribution.
- *
- **********************************************************************************************/
- extern (C) @nogc nothrow:
- // Function specifiers definition
- // We are building raylib as a Win32 shared library (.dll).
- // We are using raylib as a Win32 shared library (.dll)
- // Provide external definition
- // Functions may be inlined, no external out-of-line definition
- // plain inline not supported by tinycc (See issue #435) // Functions may be inlined or external definition used
- //----------------------------------------------------------------------------------
- // Defines and Macros
- //----------------------------------------------------------------------------------
- enum PI = 3.14159265358979323846f;
- enum DEG2RAD = PI / 180.0f;
- enum RAD2DEG = 180.0f / PI;
- // Get float vector for Matrix
- extern (D) auto MatrixToFloat(T)(auto ref T mat)
- {
- return MatrixToFloatV(mat).v;
- }
- // Get float vector for Vector3
- extern (D) auto Vector3ToFloat(T)(auto ref T vec)
- {
- return Vector3ToFloatV(vec).v;
- }
- //----------------------------------------------------------------------------------
- // Types and Structures Definition
- //----------------------------------------------------------------------------------
- // Vector2 type
- // Vector3 type
- // Vector4 type
- // Quaternion type
- // Matrix type (OpenGL style 4x4 - right handed, column major)
- // Matrix first row (4 components)
- // Matrix second row (4 components)
- // Matrix third row (4 components)
- // Matrix fourth row (4 components)
- // NOTE: Helper types to be used instead of array return types for *ToFloat functions
- struct float3
- {
- float[3] v;
- }
- struct float16
- {
- float[16] v;
- }
- // Required for: sinf(), cosf(), tan(), atan2f(), sqrtf(), fminf(), fmaxf(), fabs()
- //----------------------------------------------------------------------------------
- // Module Functions Definition - Utils math
- //----------------------------------------------------------------------------------
- // Clamp float value
- float Clamp(float value, float min, float max);
- // Calculate linear interpolation between two floats
- float Lerp(float start, float end, float amount);
- // Normalize input value within input range
- float Normalize(float value, float start, float end);
- // Remap input value within input range to output range
- float Remap(
- float value,
- float inputStart,
- float inputEnd,
- float outputStart,
- float outputEnd);
- //----------------------------------------------------------------------------------
- // Module Functions Definition - Vector2 math
- //----------------------------------------------------------------------------------
- // Vector with components value 0.0f
- Vector2 Vector2Zero();
- // Vector with components value 1.0f
- Vector2 Vector2One();
- // Add two vectors (v1 + v2)
- Vector2 Vector2Add(Vector2 v1, Vector2 v2);
- // Add vector and float value
- Vector2 Vector2AddValue(Vector2 v, float add);
- // Subtract two vectors (v1 - v2)
- Vector2 Vector2Subtract(Vector2 v1, Vector2 v2);
- // Subtract vector by float value
- Vector2 Vector2SubtractValue(Vector2 v, float sub);
- // Calculate vector length
- float Vector2Length(Vector2 v);
- // Calculate vector square length
- float Vector2LengthSqr(Vector2 v);
- // Calculate two vectors dot product
- float Vector2DotProduct(Vector2 v1, Vector2 v2);
- // Calculate distance between two vectors
- float Vector2Distance(Vector2 v1, Vector2 v2);
- // Calculate angle from two vectors in X-axis
- float Vector2Angle(Vector2 v1, Vector2 v2);
- // Scale vector (multiply by value)
- Vector2 Vector2Scale(Vector2 v, float scale);
- // Multiply vector by vector
- Vector2 Vector2Multiply(Vector2 v1, Vector2 v2);
- // Negate vector
- Vector2 Vector2Negate(Vector2 v);
- // Divide vector by vector
- Vector2 Vector2Divide(Vector2 v1, Vector2 v2);
- // Normalize provided vector
- Vector2 Vector2Normalize(Vector2 v);
- // Calculate linear interpolation between two vectors
- Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount);
- // Calculate reflected vector to normal
- // Dot product
- Vector2 Vector2Reflect(Vector2 v, Vector2 normal);
- // Rotate vector by angle
- Vector2 Vector2Rotate(Vector2 v, float angle);
- // Move Vector towards target
- Vector2 Vector2MoveTowards(Vector2 v, Vector2 target, float maxDistance);
- //----------------------------------------------------------------------------------
- // Module Functions Definition - Vector3 math
- //----------------------------------------------------------------------------------
- // Vector with components value 0.0f
- Vector3 Vector3Zero();
- // Vector with components value 1.0f
- Vector3 Vector3One();
- // Add two vectors
- Vector3 Vector3Add(Vector3 v1, Vector3 v2);
- // Add vector and float value
- Vector3 Vector3AddValue(Vector3 v, float add);
- // Subtract two vectors
- Vector3 Vector3Subtract(Vector3 v1, Vector3 v2);
- // Subtract vector by float value
- Vector3 Vector3SubtractValue(Vector3 v, float sub);
- // Multiply vector by scalar
- Vector3 Vector3Scale(Vector3 v, float scalar);
- // Multiply vector by vector
- Vector3 Vector3Multiply(Vector3 v1, Vector3 v2);
- // Calculate two vectors cross product
- Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2);
- // Calculate one vector perpendicular vector
- // Cross product between vectors
- Vector3 Vector3Perpendicular(Vector3 v);
- // Calculate vector length
- float Vector3Length(const Vector3 v);
- // Calculate vector square length
- float Vector3LengthSqr(const Vector3 v);
- // Calculate two vectors dot product
- float Vector3DotProduct(Vector3 v1, Vector3 v2);
- // Calculate distance between two vectors
- float Vector3Distance(Vector3 v1, Vector3 v2);
- // Calculate angle between two vectors in XY and XZ
- // Angle in XZ
- // Angle in XY
- Vector2 Vector3Angle(Vector3 v1, Vector3 v2);
- // Negate provided vector (invert direction)
- Vector3 Vector3Negate(Vector3 v);
- // Divide vector by vector
- Vector3 Vector3Divide(Vector3 v1, Vector3 v2);
- // Normalize provided vector
- Vector3 Vector3Normalize(Vector3 v);
- // Orthonormalize provided vectors
- // Makes vectors normalized and orthogonal to each other
- // Gram-Schmidt function implementation
- // Vector3Normalize(*v1);
- // Vector3CrossProduct(*v1, *v2)
- // Vector3Normalize(vn1);
- // Vector3CrossProduct(vn1, *v1)
- void Vector3OrthoNormalize(Vector3* v1, Vector3* v2);
- // Transforms a Vector3 by a given Matrix
- Vector3 Vector3Transform(Vector3 v, Matrix mat);
- // Transform a vector by quaternion rotation
- Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q);
- // Calculate linear interpolation between two vectors
- Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount);
- // Calculate reflected vector to normal
- // I is the original vector
- // N is the normal of the incident plane
- // R = I - (2*N*(DotProduct[I, N]))
- Vector3 Vector3Reflect(Vector3 v, Vector3 normal);
- // Get min value for each pair of components
- Vector3 Vector3Min(Vector3 v1, Vector3 v2);
- // Get max value for each pair of components
- Vector3 Vector3Max(Vector3 v1, Vector3 v2);
- // Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
- // NOTE: Assumes P is on the plane of the triangle
- // Vector3Subtract(b, a)
- // Vector3Subtract(c, a)
- // Vector3Subtract(p, a)
- // Vector3DotProduct(v0, v0)
- // Vector3DotProduct(v0, v1)
- // Vector3DotProduct(v1, v1)
- // Vector3DotProduct(v2, v0)
- // Vector3DotProduct(v2, v1)
- Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c);
- // Projects a Vector3 from screen space into object space
- // NOTE: We are avoiding calling other raymath functions despite available
- // Calculate unproject matrix (multiply view patrix by projection matrix) and invert it
- // MatrixMultiply(view, projection);
- // Calculate inverted matrix -> MatrixInvert(matViewProj);
- // Cache the matrix values (speed optimization)
- // Calculate the invert determinant (inlined to avoid double-caching)
- // Create quaternion from source point
- // Multiply quat point by unproject matrix
- // QuaternionTransform(quat, matViewProjInv)
- // Normalized world points in vectors
- Vector3 Vector3Unproject(Vector3 source, Matrix projection, Matrix view);
- // Get Vector3 as float array
- float3 Vector3ToFloatV(Vector3 v);
- //----------------------------------------------------------------------------------
- // Module Functions Definition - Matrix math
- //----------------------------------------------------------------------------------
- // Compute matrix determinant
- // Cache the matrix values (speed optimization)
- float MatrixDeterminant(Matrix mat);
- // Get the trace of the matrix (sum of the values along the diagonal)
- float MatrixTrace(Matrix mat);
- // Transposes provided matrix
- Matrix MatrixTranspose(Matrix mat);
- // Invert provided matrix
- // Cache the matrix values (speed optimization)
- // Calculate the invert determinant (inlined to avoid double-caching)
- Matrix MatrixInvert(Matrix mat);
- // Normalize provided matrix
- // Cache the matrix values (speed optimization)
- // MatrixDeterminant(mat)
- Matrix MatrixNormalize(Matrix mat);
- // Get identity matrix
- Matrix MatrixIdentity();
- // Add two matrices
- Matrix MatrixAdd(Matrix left, Matrix right);
- // Subtract two matrices (left - right)
- Matrix MatrixSubtract(Matrix left, Matrix right);
- // Get two matrix multiplication
- // NOTE: When multiplying matrices... the order matters!
- Matrix MatrixMultiply(Matrix left, Matrix right);
- // Get translation matrix
- Matrix MatrixTranslate(float x, float y, float z);
- // Create rotation matrix from axis and angle
- // NOTE: Angle should be provided in radians
- Matrix MatrixRotate(Vector3 axis, float angle);
- // Get x-rotation matrix (angle in radians)
- // MatrixIdentity()
- Matrix MatrixRotateX(float angle);
- // Get y-rotation matrix (angle in radians)
- // MatrixIdentity()
- Matrix MatrixRotateY(float angle);
- // Get z-rotation matrix (angle in radians)
- // MatrixIdentity()
- Matrix MatrixRotateZ(float angle);
- // Get xyz-rotation matrix (angles in radians)
- // MatrixIdentity()
- Matrix MatrixRotateXYZ(Vector3 ang);
- // Get zyx-rotation matrix (angles in radians)
- Matrix MatrixRotateZYX(Vector3 ang);
- // Get scaling matrix
- Matrix MatrixScale(float x, float y, float z);
- // Get perspective projection matrix
- Matrix MatrixFrustum(
- double left,
- double right,
- double bottom,
- double top,
- double near,
- double far);
- // Get perspective projection matrix
- // NOTE: Angle should be provided in radians
- // MatrixFrustum(-right, right, -top, top, near, far);
- Matrix MatrixPerspective(double fovy, double aspect, double near, double far);
- // Get orthographic projection matrix
- Matrix MatrixOrtho(
- double left,
- double right,
- double bottom,
- double top,
- double near,
- double far);
- // Get camera look-at matrix (view matrix)
- // Vector3Subtract(eye, target)
- // Vector3Normalize(vz)
- // Vector3CrossProduct(up, vz)
- // Vector3Normalize(x)
- // Vector3CrossProduct(vz, vx)
- // Vector3DotProduct(vx, eye)
- // Vector3DotProduct(vy, eye)
- // Vector3DotProduct(vz, eye)
- Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up);
- // Get float array of matrix data
- float16 MatrixToFloatV(Matrix mat);
- //----------------------------------------------------------------------------------
- // Module Functions Definition - Quaternion math
- //----------------------------------------------------------------------------------
- // Add two quaternions
- Quaternion QuaternionAdd(Quaternion q1, Quaternion q2);
- // Add quaternion and float value
- Quaternion QuaternionAddValue(Quaternion q, float add);
- // Subtract two quaternions
- Quaternion QuaternionSubtract(Quaternion q1, Quaternion q2);
- // Subtract quaternion and float value
- Quaternion QuaternionSubtractValue(Quaternion q, float sub);
- // Get identity quaternion
- Quaternion QuaternionIdentity();
- // Computes the length of a quaternion
- float QuaternionLength(Quaternion q);
- // Normalize provided quaternion
- Quaternion QuaternionNormalize(Quaternion q);
- // Invert provided quaternion
- Quaternion QuaternionInvert(Quaternion q);
- // Calculate two quaternion multiplication
- Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2);
- // Scale quaternion by float value
- Quaternion QuaternionScale(Quaternion q, float mul);
- // Divide two quaternions
- Quaternion QuaternionDivide(Quaternion q1, Quaternion q2);
- // Calculate linear interpolation between two quaternions
- Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount);
- // Calculate slerp-optimized interpolation between two quaternions
- // QuaternionLerp(q1, q2, amount)
- // QuaternionNormalize(q);
- Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount);
- // Calculates spherical linear interpolation between two quaternions
- Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount);
- // Calculate quaternion based on the rotation from one vector to another
- // Vector3DotProduct(from, to)
- // Vector3CrossProduct(from, to)
- // QuaternionNormalize(q);
- // NOTE: Normalize to essentially nlerp the original and identity to 0.5
- Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to);
- // Get a quaternion for a given rotation matrix
- Quaternion QuaternionFromMatrix(Matrix mat);
- // Get a matrix for a given quaternion
- // MatrixIdentity()
- Matrix QuaternionToMatrix(Quaternion q);
- // Get rotation quaternion for an angle and axis
- // NOTE: angle must be provided in radians
- // Vector3Normalize(axis)
- // QuaternionNormalize(q);
- Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle);
- // Get the rotation angle and axis for a given quaternion
- // QuaternionNormalize(q);
- // This occurs when the angle is zero.
- // Not a problem: just set an arbitrary normalized axis.
- void QuaternionToAxisAngle(Quaternion q, Vector3* outAxis, float* outAngle);
- // Get the quaternion equivalent to Euler angles
- // NOTE: Rotation order is ZYX
- Quaternion QuaternionFromEuler(float pitch, float yaw, float roll);
- // Get the Euler angles equivalent to quaternion (roll, pitch, yaw)
- // NOTE: Angles are returned in a Vector3 struct in radians
- // Roll (x-axis rotation)
- // Pitch (y-axis rotation)
- // Yaw (z-axis rotation)
- Vector3 QuaternionToEuler(Quaternion q);
- // Transform a quaternion given a transformation matrix
- Quaternion QuaternionTransform(Quaternion q, Matrix mat);
- // RAYMATH_H
|