raymath.d 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234
  1. import raylib;
  2. import std.math;
  3. pragma(inline, true):
  4. version (unittest)
  5. {
  6. import fluent.asserts;
  7. }
  8. mixin template Linear()
  9. {
  10. import std.algorithm : canFind, map;
  11. import std.range : join;
  12. import std.traits : FieldNameTuple;
  13. private static alias T = typeof(this);
  14. static T zero()
  15. {
  16. enum fragment = [FieldNameTuple!T].map!(field => "0.").join(",");
  17. return mixin("T(" ~ fragment ~ ")");
  18. }
  19. static T one()
  20. {
  21. enum fragment = [FieldNameTuple!T].map!(field => "1.").join(",");
  22. return mixin("T(" ~ fragment ~ ")");
  23. }
  24. T opUnary(string op)() if (["+", "-"].canFind(op))
  25. {
  26. enum fragment = [FieldNameTuple!T].map!(field => op ~ field).join(",");
  27. return mixin("T(" ~ fragment ~ ")");
  28. }
  29. static if (is(T == Rotor3))
  30. {
  31. /// Returns a rotor equivalent to first apply p, then apply q
  32. Rotor3 opBinary(string op)(Rotor3 q) if (op == "*")
  33. {
  34. alias p = this;
  35. Rotor3 r;
  36. r.a = p.a * q.a - p.i * q.i - p.j * q.j - p.k * q.k;
  37. r.i = p.i * q.a + p.a * q.i + p.j * q.k - p.k * q.j;
  38. r.j = p.j * q.a + p.a * q.j + p.k * q.i - p.i * q.k;
  39. r.k = p.k * q.a + p.a * q.k + p.i * q.j - p.j * q.i;
  40. return r;
  41. }
  42. Vector3 opBinary(string op)(Vector3 v) if (op == "*")
  43. {
  44. Vector3 rv;
  45. rv.x = a * v.x + xy * v.y - zx * v.z;
  46. rv.y = a * v.y + yz * v.z - xy * v.x;
  47. rv.z = a * v.z + zx * v.x - yz * v.y;
  48. return rv;
  49. }
  50. Vector3 opBinaryRight(string op)(Vector3 v) if (op == "*")
  51. {
  52. Vector3 vr;
  53. vr.x = v.x * a - v.y * xy + v.z * zx;
  54. vr.y = v.y * a - v.z * yz + v.x * xy;
  55. vr.z = v.z * a - v.x * zx + v.y * yz;
  56. return vr;
  57. }
  58. }
  59. else
  60. {
  61. T opBinary(string op)(T rhs) if (["+", "-"].canFind(op))
  62. {
  63. enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs." ~ field).join(",");
  64. return mixin("T(" ~ fragment ~ ")");
  65. }
  66. }
  67. T opBinary(string op)(float rhs) if (["+", "-", "*", "/"].canFind(op))
  68. {
  69. enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs").join(",");
  70. return mixin("T(" ~ fragment ~ ")");
  71. }
  72. T opBinaryRight(string op)(float lhs) if (["+", "-", "*", "/"].canFind(op))
  73. {
  74. enum fragment = [FieldNameTuple!T].map!(field => "lhs" ~ op ~ field).join(",");
  75. return mixin("T(" ~ fragment ~ ")");
  76. }
  77. }
  78. unittest
  79. {
  80. Assert.equal(-Vector2(1, 2), Vector2(-1, -2));
  81. Assert.equal(Vector3(1, 2, 9) + Vector3(3, 4, 9), Vector3(4, 6, 18));
  82. Assert.equal(4.0f - Vector2.zero, Vector2(4, 4));
  83. Assert.equal(Vector2.one - 3.0f, Vector2(-2, -2));
  84. }
  85. import std.traits : FieldNameTuple;
  86. import std.algorithm : map;
  87. import std.range : join;
  88. float length(T)(T v)
  89. {
  90. enum fragment = [FieldNameTuple!T].map!(field => "v." ~ field ~ "*" ~ "v." ~ field).join("+");
  91. return mixin("sqrt(" ~ fragment ~ ")");
  92. }
  93. T normal(T)(T v)
  94. {
  95. return v / v.length;
  96. }
  97. float distance(T)(T lhs, T rhs)
  98. {
  99. return (lhs - rhs).length;
  100. }
  101. float dot(T)(T lhs, T rhs)
  102. {
  103. enum fragment = [FieldNameTuple!T].map!(field => "lhs." ~ field ~ "*" ~ "rhs." ~ field).join(
  104. "+");
  105. return mixin(fragment);
  106. }
  107. unittest
  108. {
  109. Assert.equal(Vector2(3, 4).length, 5);
  110. Assert.equal(cast(const) Vector2(-3, 4).normal, Vector2(-3. / 5., 4. / 5.));
  111. Assert.equal(cast(immutable) Vector2(9, 8).distance(Vector2(-3, 3)), 13);
  112. Assert.equal(Vector3(2, 3, 4).dot(Vector3(4, 5, 6)), 47);
  113. Assert.equal(Vector2.one.length, sqrt(2.0f));
  114. }
  115. unittest
  116. {
  117. Assert.equal(Rotor3(1, 2, 3, 4), Rotor3(1, Bivector3(2, 3, 4)));
  118. }
  119. /// Mix `amount` of `lhs` with `1-amount` of `rhs`
  120. /// `amount` should be between 0 and 1, but can be anything
  121. /// lerp(lhs, rhs, 0) == lhs
  122. /// lerp(lhs, rhs, 1) == rhs
  123. T lerp(T)(T lhs, T rhs, float amount)
  124. {
  125. return lhs + amount * (rhs - lhs);
  126. }
  127. /// angle betwenn vector and x-axis (+y +x -> positive)
  128. float angle(Vector2 v)
  129. {
  130. return atan2(v.y, v.x);
  131. }
  132. Vector2 rotate(Vector2 v, float angle)
  133. {
  134. return Vector2(v.x * cos(angle) - v.y * sin(angle), v.x * sin(angle) + v.y * cos(angle));
  135. }
  136. Vector2 slide(Vector2 v, Vector2 along)
  137. {
  138. return along.normal * dot(v, along);
  139. }
  140. Bivector2 wedge(Vector2 lhs, Vector2 rhs)
  141. {
  142. Bivector2 result = {xy: lhs.x * rhs.y - lhs.y * rhs.x};
  143. return result;
  144. }
  145. // dfmt off
  146. Bivector3 wedge(Vector3 lhs, Vector3 rhs)
  147. {
  148. Bivector3 result = {
  149. xy: lhs.x * rhs.y - lhs.y * rhs.x,
  150. yz: lhs.y * rhs.z - lhs.z * rhs.y,
  151. zx: lhs.z * rhs.x - lhs.x * rhs.z,
  152. };
  153. return result;
  154. }
  155. Vector3 transform(Vector3 v, Matrix4 mat)
  156. {
  157. with (v) with (mat)
  158. return Vector3(
  159. m0 * x + m4 * y + m8 * z + m12,
  160. m1 * x + m5 * y + m9 * z + m13,
  161. m2 * x + m6 * y + m10 * z + m14
  162. );
  163. }
  164. // dfmt on
  165. Vector3 cross(Vector3 lhs, Vector3 rhs)
  166. {
  167. auto v = wedge(lhs, rhs);
  168. return Vector3(v.yz, v.zx, v.xy);
  169. }
  170. unittest {
  171. // TODO
  172. }
  173. /// Returns a unit rotor that rotates `from` to `to`
  174. Rotor3 rotation(Vector3 from, Vector3 to)
  175. {
  176. return Rotor3(1 + dot(to, from), wedge(to, from)).normal;
  177. }
  178. Rotor3 rotation(float angle, Bivector3 plane)
  179. {
  180. return Rotor3(cos(angle / 2.0f), -sin(angle / 2.0f) * plane);
  181. }
  182. /// Rotate q by p
  183. Rotor3 rotate(Rotor3 p, Rotor3 q)
  184. {
  185. return p * q * p.reverse;
  186. }
  187. /// Rotate v by r
  188. Vector3 rotate(Rotor3 r, Vector3 v)
  189. {
  190. return r * v * r.reverse;
  191. }
  192. Rotor3 reverse(Rotor3 r)
  193. {
  194. return Rotor3(r.a, -r.b);
  195. }
  196. unittest
  197. {
  198. // TODO
  199. }