raymathext.d 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257
  1. module raymathext;
  2. import raylib;
  3. import std.math;
  4. pragma(inline, true):
  5. version (unittest)
  6. {
  7. import fluent.asserts;
  8. }
  9. mixin template Linear()
  10. {
  11. import std.algorithm : canFind, map;
  12. import std.range : join;
  13. import std.traits : FieldNameTuple;
  14. private static alias T = typeof(this);
  15. static T zero()
  16. {
  17. enum fragment = [FieldNameTuple!T].map!(field => "0.").join(",");
  18. return mixin("T(" ~ fragment ~ ")");
  19. }
  20. static T one()
  21. {
  22. enum fragment = [FieldNameTuple!T].map!(field => "1.").join(",");
  23. return mixin("T(" ~ fragment ~ ")");
  24. }
  25. inout T opUnary(string op)() if (["+", "-"].canFind(op))
  26. {
  27. enum fragment = [FieldNameTuple!T].map!(field => op ~ field).join(",");
  28. return mixin("T(" ~ fragment ~ ")");
  29. }
  30. static if (is(T == Rotor3))
  31. {
  32. /// Returns a rotor equivalent to first apply p, then apply q
  33. inout Rotor3 opBinary(string op)(inout Rotor3 q) if (op == "*")
  34. {
  35. alias p = this;
  36. Rotor3 r;
  37. r.a = p.a * q.a - p.i * q.i - p.j * q.j - p.k * q.k;
  38. r.i = p.i * q.a + p.a * q.i + p.j * q.k - p.k * q.j;
  39. r.j = p.j * q.a + p.a * q.j + p.k * q.i - p.i * q.k;
  40. r.k = p.k * q.a + p.a * q.k + p.i * q.j - p.j * q.i;
  41. return r;
  42. }
  43. inout Vector3 opBinary(string op)(inout Vector3 v) if (op == "*")
  44. {
  45. Vector3 rv;
  46. rv.x = a * v.x + xy * v.y - zx * v.z;
  47. rv.y = a * v.y + yz * v.z - xy * v.x;
  48. rv.z = a * v.z + zx * v.x - yz * v.y;
  49. return rv;
  50. }
  51. inout Vector3 opBinaryRight(string op)(inout Vector3 v) if (op == "*")
  52. {
  53. Vector3 vr;
  54. vr.x = v.x * a - v.y * xy + v.z * zx;
  55. vr.y = v.y * a - v.z * yz + v.x * xy;
  56. vr.z = v.z * a - v.x * zx + v.y * yz;
  57. return vr;
  58. }
  59. }
  60. else
  61. {
  62. inout T opBinary(string op)(inout T rhs) if (["+", "-"].canFind(op))
  63. {
  64. enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs." ~ field).join(",");
  65. return mixin("T(" ~ fragment ~ ")");
  66. }
  67. T opOpAssign(string op)(inout T rhs) if (["+", "-", "*", "/"].canFind(op))
  68. {
  69. static foreach (field; [FieldNameTuple!T])
  70. mixin(field ~ op ~ "= rhs." ~ field ~ ";");
  71. return this;
  72. }
  73. }
  74. inout T opBinary(string op)(inout float rhs) if (["+", "-", "*", "/"].canFind(op))
  75. {
  76. enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs").join(",");
  77. return mixin("T(" ~ fragment ~ ")");
  78. }
  79. inout T opBinaryRight(string op)(inout float lhs) if (["+", "-", "*", "/"].canFind(op))
  80. {
  81. enum fragment = [FieldNameTuple!T].map!(field => "lhs" ~ op ~ field).join(",");
  82. return mixin("T(" ~ fragment ~ ")");
  83. }
  84. T opOpAssign(string op)(inout float rhs) if (["+", "-", "*", "/"].canFind(op))
  85. {
  86. static foreach (field; [FieldNameTuple!T])
  87. mixin(field ~ op ~ "= rhs;");
  88. return this;
  89. }
  90. }
  91. unittest
  92. {
  93. Assert.equal(Vector2.init, Vector2.zero);
  94. Assert.equal(Vector2(), Vector2.zero);
  95. Assert.equal(-Vector2(1, 2), Vector2(-1, -2));
  96. auto a = Vector3(1, 2, 9);
  97. immutable b = Vector3(3, 4, 9);
  98. Vector3 c = a + b;
  99. Assert.equal(c, Vector3(4, 6, 18));
  100. Assert.equal(4.0f - Vector2.zero, Vector2(4, 4));
  101. Assert.equal(Vector2.one - 3.0f, Vector2(-2, -2));
  102. }
  103. import std.traits : FieldNameTuple;
  104. import std.algorithm : map;
  105. import std.range : join;
  106. float length(T)(T v)
  107. {
  108. enum fragment = [FieldNameTuple!T].map!(field => "v." ~ field ~ "*" ~ "v." ~ field).join("+");
  109. return mixin("sqrt(" ~ fragment ~ ")");
  110. }
  111. T normal(T)(T v)
  112. {
  113. return v / v.length;
  114. }
  115. float distance(T)(T lhs, T rhs)
  116. {
  117. return (lhs - rhs).length;
  118. }
  119. float dot(T)(T lhs, T rhs)
  120. {
  121. enum fragment = [FieldNameTuple!T].map!(field => "lhs." ~ field ~ "*" ~ "rhs." ~ field).join(
  122. "+");
  123. return mixin(fragment);
  124. }
  125. unittest
  126. {
  127. Assert.equal(Vector2(3, 4).length, 5);
  128. const a = Vector2(-3, 4);
  129. Assert.equal(a.normal, Vector2(-3. / 5., 4. / 5.));
  130. immutable b = Vector2(9, 8);
  131. Assert.equal(b.distance(Vector2(-3, 3)), 13);
  132. Assert.equal(Vector3(2, 3, 4).dot(Vector3(4, 5, 6)), 47);
  133. Assert.equal(Vector2.one.length, sqrt(2.0f));
  134. }
  135. unittest
  136. {
  137. Assert.equal(Rotor3(1, 2, 3, 4), Rotor3(1, Bivector3(2, 3, 4)));
  138. }
  139. /// Mix `amount` of `lhs` with `1-amount` of `rhs`
  140. /// `amount` should be between 0 and 1, but can be anything
  141. /// lerp(lhs, rhs, 0) == lhs
  142. /// lerp(lhs, rhs, 1) == rhs
  143. T lerp(T)(T lhs, T rhs, float amount)
  144. {
  145. return lhs + amount * (rhs - lhs);
  146. }
  147. /// angle betwenn vector and x-axis (+y +x -> positive)
  148. float angle(Vector2 v)
  149. {
  150. return atan2(v.y, v.x);
  151. }
  152. Vector2 rotate(Vector2 v, float angle)
  153. {
  154. return Vector2(v.x * cos(angle) - v.y * sin(angle), v.x * sin(angle) + v.y * cos(angle));
  155. }
  156. Vector2 slide(Vector2 v, Vector2 along)
  157. {
  158. return along.normal * dot(v, along);
  159. }
  160. Bivector2 wedge(Vector2 lhs, Vector2 rhs)
  161. {
  162. Bivector2 result = {xy: lhs.x * rhs.y - lhs.y * rhs.x};
  163. return result;
  164. }
  165. // dfmt off
  166. Bivector3 wedge(Vector3 lhs, Vector3 rhs)
  167. {
  168. Bivector3 result = {
  169. xy: lhs.x * rhs.y - lhs.y * rhs.x,
  170. yz: lhs.y * rhs.z - lhs.z * rhs.y,
  171. zx: lhs.z * rhs.x - lhs.x * rhs.z,
  172. };
  173. return result;
  174. }
  175. Vector3 transform(Vector3 v, Matrix4 mat)
  176. {
  177. with (v) with (mat)
  178. return Vector3(
  179. m0 * x + m4 * y + m8 * z + m12,
  180. m1 * x + m5 * y + m9 * z + m13,
  181. m2 * x + m6 * y + m10 * z + m14
  182. );
  183. }
  184. // dfmt on
  185. Vector3 cross(Vector3 lhs, Vector3 rhs)
  186. {
  187. auto v = wedge(lhs, rhs);
  188. return Vector3(v.yz, v.zx, v.xy);
  189. }
  190. unittest {
  191. // TODO
  192. }
  193. /// Returns a unit rotor that rotates `from` to `to`
  194. Rotor3 rotation(Vector3 from, Vector3 to)
  195. {
  196. return Rotor3(1 + dot(to, from), wedge(to, from)).normal;
  197. }
  198. Rotor3 rotation(float angle, Bivector3 plane)
  199. {
  200. return Rotor3(cos(angle / 2.0f), -sin(angle / 2.0f) * plane);
  201. }
  202. /// Rotate q by p
  203. Rotor3 rotate(Rotor3 p, Rotor3 q)
  204. {
  205. return p * q * p.reverse;
  206. }
  207. /// Rotate v by r
  208. Vector3 rotate(Rotor3 r, Vector3 v)
  209. {
  210. return r * v * r.reverse;
  211. }
  212. Rotor3 reverse(Rotor3 r)
  213. {
  214. return Rotor3(r.a, -r.b);
  215. }
  216. unittest
  217. {
  218. // TODO
  219. }