raymath.d 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239
  1. import raylib;
  2. import std.math;
  3. pragma(inline, true):
  4. version (unittest)
  5. {
  6. import fluent.asserts;
  7. }
  8. mixin template Linear()
  9. {
  10. import std.algorithm : canFind, map;
  11. import std.range : join;
  12. import std.traits : FieldNameTuple;
  13. private static alias T = typeof(this);
  14. static T zero()
  15. {
  16. enum fragment = [FieldNameTuple!T].map!(field => "0.").join(",");
  17. return mixin("T(" ~ fragment ~ ")");
  18. }
  19. static T one()
  20. {
  21. enum fragment = [FieldNameTuple!T].map!(field => "1.").join(",");
  22. return mixin("T(" ~ fragment ~ ")");
  23. }
  24. inout T opUnary(string op)() if (["+", "-"].canFind(op))
  25. {
  26. enum fragment = [FieldNameTuple!T].map!(field => op ~ field).join(",");
  27. return mixin("T(" ~ fragment ~ ")");
  28. }
  29. static if (is(T == Rotor3))
  30. {
  31. /// Returns a rotor equivalent to first apply p, then apply q
  32. inout Rotor3 opBinary(string op)(inout Rotor3 q) if (op == "*")
  33. {
  34. alias p = this;
  35. Rotor3 r;
  36. r.a = p.a * q.a - p.i * q.i - p.j * q.j - p.k * q.k;
  37. r.i = p.i * q.a + p.a * q.i + p.j * q.k - p.k * q.j;
  38. r.j = p.j * q.a + p.a * q.j + p.k * q.i - p.i * q.k;
  39. r.k = p.k * q.a + p.a * q.k + p.i * q.j - p.j * q.i;
  40. return r;
  41. }
  42. inout Vector3 opBinary(string op)(inout Vector3 v) if (op == "*")
  43. {
  44. Vector3 rv;
  45. rv.x = a * v.x + xy * v.y - zx * v.z;
  46. rv.y = a * v.y + yz * v.z - xy * v.x;
  47. rv.z = a * v.z + zx * v.x - yz * v.y;
  48. return rv;
  49. }
  50. inout Vector3 opBinaryRight(string op)(inout Vector3 v) if (op == "*")
  51. {
  52. Vector3 vr;
  53. vr.x = v.x * a - v.y * xy + v.z * zx;
  54. vr.y = v.y * a - v.z * yz + v.x * xy;
  55. vr.z = v.z * a - v.x * zx + v.y * yz;
  56. return vr;
  57. }
  58. }
  59. else
  60. {
  61. inout T opBinary(string op)(inout T rhs) if (["+", "-"].canFind(op))
  62. {
  63. enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs." ~ field).join(",");
  64. return mixin("T(" ~ fragment ~ ")");
  65. }
  66. }
  67. inout T opBinary(string op)(inout float rhs) if (["+", "-", "*", "/"].canFind(op))
  68. {
  69. enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs").join(",");
  70. return mixin("T(" ~ fragment ~ ")");
  71. }
  72. inout T opBinaryRight(string op)(inout float lhs) if (["+", "-", "*", "/"].canFind(op))
  73. {
  74. enum fragment = [FieldNameTuple!T].map!(field => "lhs" ~ op ~ field).join(",");
  75. return mixin("T(" ~ fragment ~ ")");
  76. }
  77. }
  78. unittest
  79. {
  80. Assert.equal(-Vector2(1, 2), Vector2(-1, -2));
  81. auto a = Vector3(1, 2, 9);
  82. immutable b = Vector3(3, 4, 9);
  83. Vector3 c = a + b;
  84. Assert.equal(c, Vector3(4, 6, 18));
  85. Assert.equal(4.0f - Vector2.zero, Vector2(4, 4));
  86. Assert.equal(Vector2.one - 3.0f, Vector2(-2, -2));
  87. }
  88. import std.traits : FieldNameTuple;
  89. import std.algorithm : map;
  90. import std.range : join;
  91. float length(T)(T v)
  92. {
  93. enum fragment = [FieldNameTuple!T].map!(field => "v." ~ field ~ "*" ~ "v." ~ field).join("+");
  94. return mixin("sqrt(" ~ fragment ~ ")");
  95. }
  96. T normal(T)(T v)
  97. {
  98. return v / v.length;
  99. }
  100. float distance(T)(T lhs, T rhs)
  101. {
  102. return (lhs - rhs).length;
  103. }
  104. float dot(T)(T lhs, T rhs)
  105. {
  106. enum fragment = [FieldNameTuple!T].map!(field => "lhs." ~ field ~ "*" ~ "rhs." ~ field).join(
  107. "+");
  108. return mixin(fragment);
  109. }
  110. unittest
  111. {
  112. Assert.equal(Vector2(3, 4).length, 5);
  113. const a = Vector2(-3, 4);
  114. Assert.equal(a.normal, Vector2(-3. / 5., 4. / 5.));
  115. immutable b = Vector2(9, 8);
  116. Assert.equal(b.distance(Vector2(-3, 3)), 13);
  117. Assert.equal(Vector3(2, 3, 4).dot(Vector3(4, 5, 6)), 47);
  118. Assert.equal(Vector2.one.length, sqrt(2.0f));
  119. }
  120. unittest
  121. {
  122. Assert.equal(Rotor3(1, 2, 3, 4), Rotor3(1, Bivector3(2, 3, 4)));
  123. }
  124. /// Mix `amount` of `lhs` with `1-amount` of `rhs`
  125. /// `amount` should be between 0 and 1, but can be anything
  126. /// lerp(lhs, rhs, 0) == lhs
  127. /// lerp(lhs, rhs, 1) == rhs
  128. T lerp(T)(T lhs, T rhs, float amount)
  129. {
  130. return lhs + amount * (rhs - lhs);
  131. }
  132. /// angle betwenn vector and x-axis (+y +x -> positive)
  133. float angle(Vector2 v)
  134. {
  135. return atan2(v.y, v.x);
  136. }
  137. Vector2 rotate(Vector2 v, float angle)
  138. {
  139. return Vector2(v.x * cos(angle) - v.y * sin(angle), v.x * sin(angle) + v.y * cos(angle));
  140. }
  141. Vector2 slide(Vector2 v, Vector2 along)
  142. {
  143. return along.normal * dot(v, along);
  144. }
  145. Bivector2 wedge(Vector2 lhs, Vector2 rhs)
  146. {
  147. Bivector2 result = {xy: lhs.x * rhs.y - lhs.y * rhs.x};
  148. return result;
  149. }
  150. // dfmt off
  151. Bivector3 wedge(Vector3 lhs, Vector3 rhs)
  152. {
  153. Bivector3 result = {
  154. xy: lhs.x * rhs.y - lhs.y * rhs.x,
  155. yz: lhs.y * rhs.z - lhs.z * rhs.y,
  156. zx: lhs.z * rhs.x - lhs.x * rhs.z,
  157. };
  158. return result;
  159. }
  160. Vector3 transform(Vector3 v, Matrix4 mat)
  161. {
  162. with (v) with (mat)
  163. return Vector3(
  164. m0 * x + m4 * y + m8 * z + m12,
  165. m1 * x + m5 * y + m9 * z + m13,
  166. m2 * x + m6 * y + m10 * z + m14
  167. );
  168. }
  169. // dfmt on
  170. Vector3 cross(Vector3 lhs, Vector3 rhs)
  171. {
  172. auto v = wedge(lhs, rhs);
  173. return Vector3(v.yz, v.zx, v.xy);
  174. }
  175. unittest {
  176. // TODO
  177. }
  178. /// Returns a unit rotor that rotates `from` to `to`
  179. Rotor3 rotation(Vector3 from, Vector3 to)
  180. {
  181. return Rotor3(1 + dot(to, from), wedge(to, from)).normal;
  182. }
  183. Rotor3 rotation(float angle, Bivector3 plane)
  184. {
  185. return Rotor3(cos(angle / 2.0f), -sin(angle / 2.0f) * plane);
  186. }
  187. /// Rotate q by p
  188. Rotor3 rotate(Rotor3 p, Rotor3 q)
  189. {
  190. return p * q * p.reverse;
  191. }
  192. /// Rotate v by r
  193. Vector3 rotate(Rotor3 r, Vector3 v)
  194. {
  195. return r * v * r.reverse;
  196. }
  197. Rotor3 reverse(Rotor3 r)
  198. {
  199. return Rotor3(r.a, -r.b);
  200. }
  201. unittest
  202. {
  203. // TODO
  204. }