raymathext.d 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320
  1. module raylib.raymathext;
  2. import raylib;
  3. import std.math;
  4. pragma(inline, true):
  5. // Bivector2 type
  6. struct Bivector2
  7. {
  8. float xy = 0.0f;
  9. alias xy this;
  10. mixin Linear;
  11. }
  12. // Bivector3 type
  13. /// Beware of the field order
  14. /// xy is the first field
  15. struct Bivector3
  16. {
  17. float xy = 0.0f;
  18. float yz = 0.0f;
  19. float zx = 0.0f;
  20. mixin Linear;
  21. }
  22. // Rotor type
  23. struct Rotor3
  24. {
  25. float a = 1.0f;
  26. float xy = 0.0f;
  27. float yz = 0.0f;
  28. float zx = 0.0f;
  29. mixin Linear;
  30. alias i = yz;
  31. alias j = zx;
  32. alias k = xy;
  33. @property Bivector3 b()
  34. {
  35. return Bivector3(xy, yz, zx);
  36. }
  37. @property Bivector3 b(Bivector3 _b)
  38. {
  39. xy = _b.xy;
  40. yz = _b.yz;
  41. zx = _b.zx;
  42. return _b;
  43. }
  44. this(float _a, Bivector3 _b)
  45. {
  46. a = _a;
  47. b = _b;
  48. }
  49. this(float _a, float _xy, float _yz, float _zx)
  50. {
  51. a = _a;
  52. xy = _xy;
  53. yz = _yz;
  54. zx = _zx;
  55. }
  56. }
  57. alias Matrix4 = Matrix;
  58. mixin template Linear()
  59. {
  60. import std.algorithm : canFind, map;
  61. import std.range : join;
  62. import std.traits : FieldNameTuple;
  63. private static alias T = typeof(this);
  64. static T zero()
  65. {
  66. enum fragment = [FieldNameTuple!T].map!(field => "0.").join(",");
  67. return mixin("T(" ~ fragment ~ ")");
  68. }
  69. static T one()
  70. {
  71. enum fragment = [FieldNameTuple!T].map!(field => "1.").join(",");
  72. return mixin("T(" ~ fragment ~ ")");
  73. }
  74. inout T opUnary(string op)() if (["+", "-"].canFind(op))
  75. {
  76. enum fragment = [FieldNameTuple!T].map!(field => op ~ field).join(",");
  77. return mixin("T(" ~ fragment ~ ")");
  78. }
  79. static if (is(T == Rotor3))
  80. {
  81. /// Returns a rotor equivalent to first apply p, then apply q
  82. inout Rotor3 opBinary(string op)(inout Rotor3 q) if (op == "*")
  83. {
  84. alias p = this;
  85. Rotor3 r;
  86. r.a = p.a * q.a - p.i * q.i - p.j * q.j - p.k * q.k;
  87. r.i = p.i * q.a + p.a * q.i + p.j * q.k - p.k * q.j;
  88. r.j = p.j * q.a + p.a * q.j + p.k * q.i - p.i * q.k;
  89. r.k = p.k * q.a + p.a * q.k + p.i * q.j - p.j * q.i;
  90. return r;
  91. }
  92. inout Vector3 opBinary(string op)(inout Vector3 v) if (op == "*")
  93. {
  94. Vector3 rv;
  95. rv.x = a * v.x + xy * v.y - zx * v.z;
  96. rv.y = a * v.y + yz * v.z - xy * v.x;
  97. rv.z = a * v.z + zx * v.x - yz * v.y;
  98. return rv;
  99. }
  100. inout Vector3 opBinaryRight(string op)(inout Vector3 v) if (op == "*")
  101. {
  102. Vector3 vr;
  103. vr.x = v.x * a - v.y * xy + v.z * zx;
  104. vr.y = v.y * a - v.z * yz + v.x * xy;
  105. vr.z = v.z * a - v.x * zx + v.y * yz;
  106. return vr;
  107. }
  108. }
  109. else
  110. {
  111. inout T opBinary(string op)(inout T rhs) if (["+", "-"].canFind(op))
  112. {
  113. enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs." ~ field).join(",");
  114. return mixin("T(" ~ fragment ~ ")");
  115. }
  116. ref T opOpAssign(string op)(inout T rhs) if (["+", "-"].canFind(op))
  117. {
  118. static foreach (field; [FieldNameTuple!T])
  119. mixin(field ~ op ~ "= rhs." ~ field ~ ";");
  120. return this;
  121. }
  122. }
  123. inout T opBinary(string op)(inout float rhs) if (["+", "-", "*", "/"].canFind(op))
  124. {
  125. enum fragment = [FieldNameTuple!T].map!(field => field ~ op ~ "rhs").join(",");
  126. return mixin("T(" ~ fragment ~ ")");
  127. }
  128. inout T opBinaryRight(string op)(inout float lhs) if (["+", "-", "*", "/"].canFind(op))
  129. {
  130. enum fragment = [FieldNameTuple!T].map!(field => "lhs" ~ op ~ field).join(",");
  131. return mixin("T(" ~ fragment ~ ")");
  132. }
  133. ref T opOpAssign(string op)(inout float rhs) if (["+", "-", "*", "/"].canFind(op))
  134. {
  135. static foreach (field; [FieldNameTuple!T])
  136. mixin(field ~ op ~ "= rhs;");
  137. return this;
  138. }
  139. }
  140. unittest
  141. {
  142. assert(Vector2.init == Vector2.zero);
  143. assert(Vector2() == Vector2.zero);
  144. assert(-Vector2(1, 2) == Vector2(-1, -2));
  145. auto a = Vector3(1, 2, 9);
  146. immutable b = Vector3(3, 4, 9);
  147. Vector3 c = a + b;
  148. assert(c == Vector3(4, 6, 18));
  149. assert(4.0f - Vector2.zero == Vector2(4, 4));
  150. assert(Vector2.one - 3.0f == Vector2(-2, -2));
  151. a += 5;
  152. assert(a == Vector3(6, 7, 14));
  153. a *= 0.5;
  154. assert(a == Vector3(3, 3.5, 7));
  155. a += Vector3(3, 2.5, -1);
  156. assert(a == Vector3(6, 6, 6));
  157. }
  158. import std.traits : FieldNameTuple;
  159. import std.algorithm : map;
  160. import std.range : join;
  161. float length(T)(T v)
  162. {
  163. enum fragment = [FieldNameTuple!T].map!(field => "v." ~ field ~ "*" ~ "v." ~ field).join("+");
  164. return mixin("sqrt(" ~ fragment ~ ")");
  165. }
  166. T normal(T)(T v)
  167. {
  168. return v / v.length;
  169. }
  170. float distance(T)(T lhs, T rhs)
  171. {
  172. return (lhs - rhs).length;
  173. }
  174. float dot(T)(T lhs, T rhs)
  175. {
  176. enum fragment = [FieldNameTuple!T].map!(field => "lhs." ~ field ~ "*" ~ "rhs." ~ field).join(
  177. "+");
  178. return mixin(fragment);
  179. }
  180. unittest
  181. {
  182. assert(Vector2(3, 4).length == 5);
  183. const a = Vector2(-3, 4);
  184. assert(a.normal == Vector2(-3. / 5., 4. / 5.));
  185. immutable b = Vector2(9, 8);
  186. assert(b.distance(Vector2(-3, 3)) == 13);
  187. assert(Vector3(2, 3, 4).dot(Vector3(4, 5, 6)) == 47);
  188. assert(Vector2.one.length == sqrt(2.0f));
  189. }
  190. unittest
  191. {
  192. assert(Rotor3(1, 2, 3, 4) == Rotor3(1, Bivector3(2, 3, 4)));
  193. }
  194. /// Mix `amount` of `lhs` with `1-amount` of `rhs`
  195. /// `amount` should be between 0 and 1, but can be anything
  196. /// lerp(lhs, rhs, 0) == lhs
  197. /// lerp(lhs, rhs, 1) == rhs
  198. T lerp(T)(T lhs, T rhs, float amount)
  199. {
  200. return lhs + amount * (rhs - lhs);
  201. }
  202. /// angle betwenn vector and x-axis (+y +x -> positive)
  203. float angle(Vector2 v)
  204. {
  205. return atan2(v.y, v.x);
  206. }
  207. Vector2 rotate(Vector2 v, float angle)
  208. {
  209. return Vector2(v.x * cos(angle) - v.y * sin(angle), v.x * sin(angle) + v.y * cos(angle));
  210. }
  211. Vector2 slide(Vector2 v, Vector2 along)
  212. {
  213. return along.normal * dot(v, along);
  214. }
  215. Bivector2 wedge(Vector2 lhs, Vector2 rhs)
  216. {
  217. Bivector2 result = {xy: lhs.x * rhs.y - lhs.y * rhs.x};
  218. return result;
  219. }
  220. // dfmt off
  221. Bivector3 wedge(Vector3 lhs, Vector3 rhs)
  222. {
  223. Bivector3 result = {
  224. xy: lhs.x * rhs.y - lhs.y * rhs.x,
  225. yz: lhs.y * rhs.z - lhs.z * rhs.y,
  226. zx: lhs.z * rhs.x - lhs.x * rhs.z,
  227. };
  228. return result;
  229. }
  230. Vector3 transform(Vector3 v, Matrix4 mat)
  231. {
  232. with (v) with (mat)
  233. return Vector3(
  234. m0 * x + m4 * y + m8 * z + m12,
  235. m1 * x + m5 * y + m9 * z + m13,
  236. m2 * x + m6 * y + m10 * z + m14
  237. );
  238. }
  239. // dfmt on
  240. Vector3 cross(Vector3 lhs, Vector3 rhs)
  241. {
  242. auto v = wedge(lhs, rhs);
  243. return Vector3(v.yz, v.zx, v.xy);
  244. }
  245. unittest {
  246. // TODO
  247. }
  248. /// Returns a unit rotor that rotates `from` to `to`
  249. Rotor3 rotation(Vector3 from, Vector3 to)
  250. {
  251. return Rotor3(1 + dot(to, from), wedge(to, from)).normal;
  252. }
  253. Rotor3 rotation(float angle, Bivector3 plane)
  254. {
  255. return Rotor3(cos(angle / 2.0f), -sin(angle / 2.0f) * plane);
  256. }
  257. /// Rotate q by p
  258. Rotor3 rotate(Rotor3 p, Rotor3 q)
  259. {
  260. return p * q * p.reverse;
  261. }
  262. /// Rotate v by r
  263. Vector3 rotate(Rotor3 r, Vector3 v)
  264. {
  265. return r * v * r.reverse;
  266. }
  267. Rotor3 reverse(Rotor3 r)
  268. {
  269. return Rotor3(r.a, -r.b);
  270. }
  271. unittest
  272. {
  273. // TODO
  274. }